3.1.21 \(\int \text {csch}(c+d x) (a+b \tanh ^2(c+d x))^3 \, dx\) [21]

3.1.21.1 Optimal result
3.1.21.2 Mathematica [A] (verified)
3.1.21.3 Rubi [A] (verified)
3.1.21.4 Maple [A] (verified)
3.1.21.5 Fricas [B] (verification not implemented)
3.1.21.6 Sympy [F]
3.1.21.7 Maxima [B] (verification not implemented)
3.1.21.8 Giac [B] (verification not implemented)
3.1.21.9 Mupad [B] (verification not implemented)

3.1.21.1 Optimal result

Integrand size = 21, antiderivative size = 84 \[ \int \text {csch}(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=-\frac {a^3 \text {arctanh}(\cosh (c+d x))}{d}-\frac {b \left (3 a^2+3 a b+b^2\right ) \text {sech}(c+d x)}{d}+\frac {b^2 (3 a+2 b) \text {sech}^3(c+d x)}{3 d}-\frac {b^3 \text {sech}^5(c+d x)}{5 d} \]

output
-a^3*arctanh(cosh(d*x+c))/d-b*(3*a^2+3*a*b+b^2)*sech(d*x+c)/d+1/3*b^2*(3*a 
+2*b)*sech(d*x+c)^3/d-1/5*b^3*sech(d*x+c)^5/d
 
3.1.21.2 Mathematica [A] (verified)

Time = 11.33 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.11 \[ \int \text {csch}(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=\frac {15 a^3 \left (-\log \left (\cosh \left (\frac {1}{2} (c+d x)\right )\right )+\log \left (\sinh \left (\frac {1}{2} (c+d x)\right )\right )\right )-15 b \left (3 a^2+3 a b+b^2\right ) \text {sech}(c+d x)+5 b^2 (3 a+2 b) \text {sech}^3(c+d x)-3 b^3 \text {sech}^5(c+d x)}{15 d} \]

input
Integrate[Csch[c + d*x]*(a + b*Tanh[c + d*x]^2)^3,x]
 
output
(15*a^3*(-Log[Cosh[(c + d*x)/2]] + Log[Sinh[(c + d*x)/2]]) - 15*b*(3*a^2 + 
 3*a*b + b^2)*Sech[c + d*x] + 5*b^2*(3*a + 2*b)*Sech[c + d*x]^3 - 3*b^3*Se 
ch[c + d*x]^5)/(15*d)
 
3.1.21.3 Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.90, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 26, 4147, 25, 300, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \text {csch}(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {i \left (a-b \tan (i c+i d x)^2\right )^3}{\sin (i c+i d x)}dx\)

\(\Big \downarrow \) 26

\(\displaystyle i \int \frac {\left (a-b \tan (i c+i d x)^2\right )^3}{\sin (i c+i d x)}dx\)

\(\Big \downarrow \) 4147

\(\displaystyle \frac {\int -\frac {\left (-b \text {sech}^2(c+d x)+a+b\right )^3}{1-\text {sech}^2(c+d x)}d\text {sech}(c+d x)}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\left (-b \text {sech}^2(c+d x)+a+b\right )^3}{1-\text {sech}^2(c+d x)}d\text {sech}(c+d x)}{d}\)

\(\Big \downarrow \) 300

\(\displaystyle -\frac {\int \left (b^3 \text {sech}^4(c+d x)-b^2 (3 a+2 b) \text {sech}^2(c+d x)+b \left (3 a^2+3 b a+b^2\right )+\frac {a^3}{1-\text {sech}^2(c+d x)}\right )d\text {sech}(c+d x)}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-a^3 \text {arctanh}(\text {sech}(c+d x))-b \left (3 a^2+3 a b+b^2\right ) \text {sech}(c+d x)+\frac {1}{3} b^2 (3 a+2 b) \text {sech}^3(c+d x)-\frac {1}{5} b^3 \text {sech}^5(c+d x)}{d}\)

input
Int[Csch[c + d*x]*(a + b*Tanh[c + d*x]^2)^3,x]
 
output
(-(a^3*ArcTanh[Sech[c + d*x]]) - b*(3*a^2 + 3*a*b + b^2)*Sech[c + d*x] + ( 
b^2*(3*a + 2*b)*Sech[c + d*x]^3)/3 - (b^3*Sech[c + d*x]^5)/5)/d
 

3.1.21.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 300
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Int 
[PolynomialDivide[(a + b*x^2)^p, (c + d*x^2)^(-q), x], x] /; FreeQ[{a, b, c 
, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] && ILtQ[q, 0] && GeQ[p, -q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4147
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Simp[1/(f*ff^ 
m)   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m + 1 
)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[( 
m - 1)/2]
 
3.1.21.4 Maple [A] (verified)

Time = 1.22 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.40

method result size
derivativedivides \(\frac {-2 a^{3} \operatorname {arctanh}\left ({\mathrm e}^{d x +c}\right )-\frac {3 a^{2} b}{\cosh \left (d x +c \right )}+3 a \,b^{2} \left (-\frac {\sinh \left (d x +c \right )^{2}}{\cosh \left (d x +c \right )^{3}}-\frac {2}{3 \cosh \left (d x +c \right )^{3}}\right )+b^{3} \left (-\frac {\sinh \left (d x +c \right )^{4}}{\cosh \left (d x +c \right )^{5}}-\frac {4 \sinh \left (d x +c \right )^{2}}{3 \cosh \left (d x +c \right )^{5}}-\frac {8}{15 \cosh \left (d x +c \right )^{5}}\right )}{d}\) \(118\)
default \(\frac {-2 a^{3} \operatorname {arctanh}\left ({\mathrm e}^{d x +c}\right )-\frac {3 a^{2} b}{\cosh \left (d x +c \right )}+3 a \,b^{2} \left (-\frac {\sinh \left (d x +c \right )^{2}}{\cosh \left (d x +c \right )^{3}}-\frac {2}{3 \cosh \left (d x +c \right )^{3}}\right )+b^{3} \left (-\frac {\sinh \left (d x +c \right )^{4}}{\cosh \left (d x +c \right )^{5}}-\frac {4 \sinh \left (d x +c \right )^{2}}{3 \cosh \left (d x +c \right )^{5}}-\frac {8}{15 \cosh \left (d x +c \right )^{5}}\right )}{d}\) \(118\)
risch \(-\frac {2 b \,{\mathrm e}^{d x +c} \left (45 a^{2} {\mathrm e}^{8 d x +8 c}+45 a b \,{\mathrm e}^{8 d x +8 c}+15 b^{2} {\mathrm e}^{8 d x +8 c}+180 a^{2} {\mathrm e}^{6 d x +6 c}+120 a b \,{\mathrm e}^{6 d x +6 c}+20 b^{2} {\mathrm e}^{6 d x +6 c}+270 a^{2} {\mathrm e}^{4 d x +4 c}+150 a b \,{\mathrm e}^{4 d x +4 c}+58 \,{\mathrm e}^{4 d x +4 c} b^{2}+180 a^{2} {\mathrm e}^{2 d x +2 c}+120 a b \,{\mathrm e}^{2 d x +2 c}+20 \,{\mathrm e}^{2 d x +2 c} b^{2}+45 a^{2}+45 a b +15 b^{2}\right )}{15 d \left ({\mathrm e}^{2 d x +2 c}+1\right )^{5}}+\frac {a^{3} \ln \left ({\mathrm e}^{d x +c}-1\right )}{d}-\frac {a^{3} \ln \left ({\mathrm e}^{d x +c}+1\right )}{d}\) \(239\)

input
int(csch(d*x+c)*(a+b*tanh(d*x+c)^2)^3,x,method=_RETURNVERBOSE)
 
output
1/d*(-2*a^3*arctanh(exp(d*x+c))-3*a^2*b/cosh(d*x+c)+3*a*b^2*(-sinh(d*x+c)^ 
2/cosh(d*x+c)^3-2/3/cosh(d*x+c)^3)+b^3*(-sinh(d*x+c)^4/cosh(d*x+c)^5-4/3*s 
inh(d*x+c)^2/cosh(d*x+c)^5-8/15/cosh(d*x+c)^5))
 
3.1.21.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2277 vs. \(2 (80) = 160\).

Time = 0.28 (sec) , antiderivative size = 2277, normalized size of antiderivative = 27.11 \[ \int \text {csch}(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=\text {Too large to display} \]

input
integrate(csch(d*x+c)*(a+b*tanh(d*x+c)^2)^3,x, algorithm="fricas")
 
output
-1/15*(30*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^9 + 270*(3*a^2*b + 3*a*b 
^2 + b^3)*cosh(d*x + c)*sinh(d*x + c)^8 + 30*(3*a^2*b + 3*a*b^2 + b^3)*sin 
h(d*x + c)^9 + 40*(9*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^7 + 40*(9*a^2*b 
+ 6*a*b^2 + b^3 + 27*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^2)*sinh(d*x + 
 c)^7 + 280*(9*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^3 + (9*a^2*b + 6*a* 
b^2 + b^3)*cosh(d*x + c))*sinh(d*x + c)^6 + 4*(135*a^2*b + 75*a*b^2 + 29*b 
^3)*cosh(d*x + c)^5 + 4*(945*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^4 + 1 
35*a^2*b + 75*a*b^2 + 29*b^3 + 210*(9*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c) 
^2)*sinh(d*x + c)^5 + 20*(189*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^5 + 
70*(9*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^3 + (135*a^2*b + 75*a*b^2 + 29* 
b^3)*cosh(d*x + c))*sinh(d*x + c)^4 + 40*(9*a^2*b + 6*a*b^2 + b^3)*cosh(d* 
x + c)^3 + 40*(63*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^6 + 35*(9*a^2*b 
+ 6*a*b^2 + b^3)*cosh(d*x + c)^4 + 9*a^2*b + 6*a*b^2 + b^3 + (135*a^2*b + 
75*a*b^2 + 29*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^3 + 40*(27*(3*a^2*b + 3* 
a*b^2 + b^3)*cosh(d*x + c)^7 + 21*(9*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^ 
5 + (135*a^2*b + 75*a*b^2 + 29*b^3)*cosh(d*x + c)^3 + 3*(9*a^2*b + 6*a*b^2 
 + b^3)*cosh(d*x + c))*sinh(d*x + c)^2 + 30*(3*a^2*b + 3*a*b^2 + b^3)*cosh 
(d*x + c) + 15*(a^3*cosh(d*x + c)^10 + 10*a^3*cosh(d*x + c)*sinh(d*x + c)^ 
9 + a^3*sinh(d*x + c)^10 + 5*a^3*cosh(d*x + c)^8 + 10*a^3*cosh(d*x + c)^6 
+ 5*(9*a^3*cosh(d*x + c)^2 + a^3)*sinh(d*x + c)^8 + 40*(3*a^3*cosh(d*x ...
 
3.1.21.6 Sympy [F]

\[ \int \text {csch}(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=\int \left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{3} \operatorname {csch}{\left (c + d x \right )}\, dx \]

input
integrate(csch(d*x+c)*(a+b*tanh(d*x+c)**2)**3,x)
 
output
Integral((a + b*tanh(c + d*x)**2)**3*csch(c + d*x), x)
 
3.1.21.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 560 vs. \(2 (80) = 160\).

Time = 0.21 (sec) , antiderivative size = 560, normalized size of antiderivative = 6.67 \[ \int \text {csch}(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=-\frac {2}{15} \, b^{3} {\left (\frac {15 \, e^{\left (-d x - c\right )}}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} + \frac {20 \, e^{\left (-3 \, d x - 3 \, c\right )}}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} + \frac {58 \, e^{\left (-5 \, d x - 5 \, c\right )}}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} + \frac {20 \, e^{\left (-7 \, d x - 7 \, c\right )}}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} + \frac {15 \, e^{\left (-9 \, d x - 9 \, c\right )}}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}}\right )} - 2 \, a b^{2} {\left (\frac {3 \, e^{\left (-d x - c\right )}}{d {\left (3 \, e^{\left (-2 \, d x - 2 \, c\right )} + 3 \, e^{\left (-4 \, d x - 4 \, c\right )} + e^{\left (-6 \, d x - 6 \, c\right )} + 1\right )}} + \frac {2 \, e^{\left (-3 \, d x - 3 \, c\right )}}{d {\left (3 \, e^{\left (-2 \, d x - 2 \, c\right )} + 3 \, e^{\left (-4 \, d x - 4 \, c\right )} + e^{\left (-6 \, d x - 6 \, c\right )} + 1\right )}} + \frac {3 \, e^{\left (-5 \, d x - 5 \, c\right )}}{d {\left (3 \, e^{\left (-2 \, d x - 2 \, c\right )} + 3 \, e^{\left (-4 \, d x - 4 \, c\right )} + e^{\left (-6 \, d x - 6 \, c\right )} + 1\right )}}\right )} + \frac {a^{3} \log \left (\tanh \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{d} - \frac {6 \, a^{2} b}{d {\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}} \]

input
integrate(csch(d*x+c)*(a+b*tanh(d*x+c)^2)^3,x, algorithm="maxima")
 
output
-2/15*b^3*(15*e^(-d*x - c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 
10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1)) + 20*e 
^(-3*d*x - 3*c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d* 
x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1)) + 58*e^(-5*d*x - 
5*c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) + 
5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1)) + 20*e^(-7*d*x - 7*c)/(d*(5* 
e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x 
 - 8*c) + e^(-10*d*x - 10*c) + 1)) + 15*e^(-9*d*x - 9*c)/(d*(5*e^(-2*d*x - 
 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e 
^(-10*d*x - 10*c) + 1))) - 2*a*b^2*(3*e^(-d*x - c)/(d*(3*e^(-2*d*x - 2*c) 
+ 3*e^(-4*d*x - 4*c) + e^(-6*d*x - 6*c) + 1)) + 2*e^(-3*d*x - 3*c)/(d*(3*e 
^(-2*d*x - 2*c) + 3*e^(-4*d*x - 4*c) + e^(-6*d*x - 6*c) + 1)) + 3*e^(-5*d* 
x - 5*c)/(d*(3*e^(-2*d*x - 2*c) + 3*e^(-4*d*x - 4*c) + e^(-6*d*x - 6*c) + 
1))) + a^3*log(tanh(1/2*d*x + 1/2*c))/d - 6*a^2*b/(d*(e^(d*x + c) + e^(-d* 
x - c)))
 
3.1.21.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 196 vs. \(2 (80) = 160\).

Time = 0.42 (sec) , antiderivative size = 196, normalized size of antiderivative = 2.33 \[ \int \text {csch}(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=-\frac {15 \, a^{3} \log \left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )} + 2\right ) - 15 \, a^{3} \log \left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )} - 2\right ) + \frac {4 \, {\left (45 \, a^{2} b {\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}^{4} + 45 \, a b^{2} {\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}^{4} + 15 \, b^{3} {\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}^{4} - 60 \, a b^{2} {\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}^{2} - 40 \, b^{3} {\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}^{2} + 48 \, b^{3}\right )}}{{\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}^{5}}}{30 \, d} \]

input
integrate(csch(d*x+c)*(a+b*tanh(d*x+c)^2)^3,x, algorithm="giac")
 
output
-1/30*(15*a^3*log(e^(d*x + c) + e^(-d*x - c) + 2) - 15*a^3*log(e^(d*x + c) 
 + e^(-d*x - c) - 2) + 4*(45*a^2*b*(e^(d*x + c) + e^(-d*x - c))^4 + 45*a*b 
^2*(e^(d*x + c) + e^(-d*x - c))^4 + 15*b^3*(e^(d*x + c) + e^(-d*x - c))^4 
- 60*a*b^2*(e^(d*x + c) + e^(-d*x - c))^2 - 40*b^3*(e^(d*x + c) + e^(-d*x 
- c))^2 + 48*b^3)/(e^(d*x + c) + e^(-d*x - c))^5)/d
 
3.1.21.9 Mupad [B] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 317, normalized size of antiderivative = 3.77 \[ \int \text {csch}(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=\frac {8\,{\mathrm {e}}^{c+d\,x}\,\left (2\,b^3+3\,a\,b^2\right )}{3\,d\,\left (2\,{\mathrm {e}}^{2\,c+2\,d\,x}+{\mathrm {e}}^{4\,c+4\,d\,x}+1\right )}-\frac {2\,\mathrm {atan}\left (\frac {a^3\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\,\sqrt {-d^2}}{d\,\sqrt {a^6}}\right )\,\sqrt {a^6}}{\sqrt {-d^2}}-\frac {2\,{\mathrm {e}}^{c+d\,x}\,\left (3\,a^2\,b+3\,a\,b^2+b^3\right )}{d\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )}+\frac {64\,b^3\,{\mathrm {e}}^{c+d\,x}}{5\,d\,\left (4\,{\mathrm {e}}^{2\,c+2\,d\,x}+6\,{\mathrm {e}}^{4\,c+4\,d\,x}+4\,{\mathrm {e}}^{6\,c+6\,d\,x}+{\mathrm {e}}^{8\,c+8\,d\,x}+1\right )}-\frac {8\,{\mathrm {e}}^{c+d\,x}\,\left (22\,b^3+15\,a\,b^2\right )}{15\,d\,\left (3\,{\mathrm {e}}^{2\,c+2\,d\,x}+3\,{\mathrm {e}}^{4\,c+4\,d\,x}+{\mathrm {e}}^{6\,c+6\,d\,x}+1\right )}-\frac {32\,b^3\,{\mathrm {e}}^{c+d\,x}}{5\,d\,\left (5\,{\mathrm {e}}^{2\,c+2\,d\,x}+10\,{\mathrm {e}}^{4\,c+4\,d\,x}+10\,{\mathrm {e}}^{6\,c+6\,d\,x}+5\,{\mathrm {e}}^{8\,c+8\,d\,x}+{\mathrm {e}}^{10\,c+10\,d\,x}+1\right )} \]

input
int((a + b*tanh(c + d*x)^2)^3/sinh(c + d*x),x)
 
output
(8*exp(c + d*x)*(3*a*b^2 + 2*b^3))/(3*d*(2*exp(2*c + 2*d*x) + exp(4*c + 4* 
d*x) + 1)) - (2*atan((a^3*exp(d*x)*exp(c)*(-d^2)^(1/2))/(d*(a^6)^(1/2)))*( 
a^6)^(1/2))/(-d^2)^(1/2) - (2*exp(c + d*x)*(3*a*b^2 + 3*a^2*b + b^3))/(d*( 
exp(2*c + 2*d*x) + 1)) + (64*b^3*exp(c + d*x))/(5*d*(4*exp(2*c + 2*d*x) + 
6*exp(4*c + 4*d*x) + 4*exp(6*c + 6*d*x) + exp(8*c + 8*d*x) + 1)) - (8*exp( 
c + d*x)*(15*a*b^2 + 22*b^3))/(15*d*(3*exp(2*c + 2*d*x) + 3*exp(4*c + 4*d* 
x) + exp(6*c + 6*d*x) + 1)) - (32*b^3*exp(c + d*x))/(5*d*(5*exp(2*c + 2*d* 
x) + 10*exp(4*c + 4*d*x) + 10*exp(6*c + 6*d*x) + 5*exp(8*c + 8*d*x) + exp( 
10*c + 10*d*x) + 1))